시그모이드 (1) 썸네일형 리스트형 활성화 함수(activation function)종류 및 정리 수식 : output값을 0에서 1사이로 만들어준다. 데이터의 평균은 0.5를 갖게된다. 위 그림에서 시그모이드 함수의 기울기를 보면 알 수 있듯이 input값이 어느정도 크거나 작으면 기울기가 아주 작아진다. 이로인해 생기는 문제점은 vanishing gradient현상이 있다. Vanishing gradient 이렇게 시그모이드로 여러 layer를 쌓았다고 가정하자. 그러면 출력층에서 멀어질수록 기울기가 거의 0인 몇몇 노드에 의해서 점점 역전파해갈수록, 즉 입력층 쪽으로갈수록 대부분의 노드에서 기울기가 0이되어 결국 gradient가 거의 완전히 사라지고만다. 결국 입력층쪽 노드들은 기울기가 사라지므로 학습이 되지 않게 된다. 시그모이드를 사용하는 경우 대부분의 경우에서 시그모이드함수는 좋지 않기때.. 이전 1 다음